شماره ركورد كنفرانس :
3976
عنوان مقاله :
Model Free and Hybrid Genetic Algorithm Coupled Direct Search Methods for Pyrolysis Kinetics: Thermal Decomposition of Waste PET
پديدآورندگان :
Ahmadi Azqhandi Mohammad Hossein m.ahmadi@yu.ac.ir Yasouj University , Shekari Mohsen Yasouj University
كليدواژه :
Genetic Algorithm , TGA , Polymer , Kinetic , Degradation.
عنوان كنفرانس :
ششمين سمينار ملي دوسالانه كمومتريكس ايران
چكيده فارسي :
Model-free approach that are implemented till date for evaluating the optimum overall
pyrolysis kinetics parameters usually used traditional gradient base optimization
techniques. Since polymer decomposition is a complicated process, serious uncertainties
arise about an accurate description of decomposition kinetics by using simplified
equations expressing a rate of the process only via mass loss [1-5].
To overcome such drawbacks and uncertainties, we have, used the modern evolutionary
optimization method (i.e. hybrid genetic algorithms (HGA) technique). The
experimental thermogravimetric analysis (TGA) data was used in this technique to
attain the globally optimum kinetics parameters. Also, we compare the experimental and
simulated data to obtain the possible mechanism to take place during pyrolysis. As case
study, we used thermal decomposition of polyethylene terephthalate (PET). The
suitability of the models is also tested using the AICc score. Also, the nth order model
demonstrations good AICc score and well predicted the experimental TGA data.