شماره ركورد كنفرانس :
4001
عنوان مقاله :
AUTOMATIC CENTERLINE EXTRACTION OF COVERD ROADS BY SURROUNDING OBJECTS FROM HIGH RESOLUTION SATELLITE IMAGES
پديدآورندگان :
Kamangir Hamid Hamid.kamangir@gmail.com University of Isfahan , Momeni Mehdi momeni@eng.ui.ac.ir University of Isfahan , Satari Mehran sattari@eng.ui.ac.ir University of Isfahan
كليدواژه :
: Maximum Likelihood Classification , Connected Component , RANSAC algorithm , Morphological Operators , Road Extraction , Minimum Map Unit (MMU) concept.
عنوان كنفرانس :
دومين همايش بين المللي پژوهش هاي اطلاعات مكاني و چهارمين همايش بين المللي سنجنده ها و مدل ها در فتوگرامتري و سنجش از دور و ششمين همايش بين المللي مشاهدات زميني در تغييرات محيطي
چكيده فارسي :
This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.