شماره ركورد كنفرانس :
4001
عنوان مقاله :
ESTIMATING SOIL MOISTURE USING POLSAR DATA: A MACHINE LEARNING APPROACH
پديدآورندگان :
khedri E esmaeilkhedri@ut.ac.ir University of Tehran , Hasanlou M hasanlou@ut.ac.ir University of Tehran , Tabatabaeenejad A alirezat@usc.edu University of Southern California
تعداد صفحه :
5
كليدواژه :
Soil moisture , Sequential Forward Selection , sequential backward selection , support vector regression
سال انتشار :
1396
عنوان كنفرانس :
دومين همايش بين المللي پژوهش هاي اطلاعات مكاني و چهارمين همايش بين المللي سنجنده ها و مدل ها در فتوگرامتري و سنجش از دور و ششمين همايش بين المللي مشاهدات زميني در تغييرات محيطي
زبان مدرك :
انگليسي
چكيده فارسي :
Soil moisture is an important parameter that affects several environmental processes. This parameter has many important functions in numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures for moisture calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating soil moisture in vast territories and high-cost nature as well as spatial and local variability of soil moisture. Polarimetric synthetic aperture radar (PolSAR) imaging is a powerful tool for estimating soil moisture. These images provide a wide field of view and high spatial resolution. For estimating soil moisture, in this study, a model of support vector regression (SVR) is proposed based on obtained data from AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection (SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C channels, which has provided better accuracy compared to other feature selection algorithms
كشور :
ايران
لينک به اين مدرک :
بازگشت