شماره ركورد كنفرانس :
4062
عنوان مقاله :
CHARACTER DEGREE GRAPH OF SOLVABLE GROUPS
پديدآورندگان :
AKHLAGHI Z z.akhlaghi@aut.ac.ir Amirkabir University of Technology , CASOLO C carlo.casolo@unifi.it Universit`a degli Studi di Firenze, Italy , DOLFI S dolfi@math.unifi.it Universit`a degli Studi di Firenze, Italy , KHEDRI K k.khedri@math.iut.ac.ir Isfahan University of Technology , PACIFICI E emanuele.pacifici@unimi.it Universit`a degli Studi di Milano, Italy
كليدواژه :
Finite solvable groups , Character degrees , Prime graphs.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گراف و تركيبيات جبري
چكيده فارسي :
. Let G be a finite solvable group, and let ∆(G) denote the prime graph built
on the set of degrees of the irreducible complex characters of G. A fundamental result
by P.P. Palfy asserts that the complement
∆(G) of the graph ∆(G) does not contain
any cycle of length 3. In this paper we generalize Palfy s result, showing tha
∆(G) does
not contain any cycle of odd length, whence it is a bipartite graph. As an immediate
consequence, the set of vertices of ∆(G) can be covered by two subsets, each inducing
a complete subgraph. The latter property yields in turn that if n is the clique number
of ∆(G), then ∆(G) has at most 2n vertices. This conrms a conjecture by Z. Akhlaghi
and H.P. Tong-Viet, and provides some evidence for the famous ρ-σ conjecture by B.
Huppert.