شماره ركورد كنفرانس :
4062
عنوان مقاله :
INCLUSION SUBMODULE GRAPH OF A MODULE
پديدآورندگان :
MAHDAVI LOTF ALI l.a.mahdavi154@gmail.com University of Mazandaran, Babolsar, Iran , TALEBI YAHYA talebi@umz.ac.ir University of Mazandaran, Babolsar, Iran
تعداد صفحه :
5
كليدواژه :
Inclusion submodule graph , Diameter , Girth , Clique number , Chromatic number.
سال انتشار :
1395
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گراف و تركيبيات جبري
زبان مدرك :
انگليسي
چكيده فارسي :
Let M be a unitary left R-module where R is a ring with identity. The inclusion submodule graph of a module M, denoted by In(M), is an undirected simple graph whose vertex set V (In(M)), is a set of all non-trivial submodules of M and there is an edge between two distinct vertices X and Y if and only if X ⊂ Y or Y ⊂ X. In this paper, we consider several properties of the graph In(M) such as connectivity, diameter and the girth. We characterize some modules for which the inclusion submodule graphs are connected, complete and null. Finally, we study the clique number and the chromatic number of In(M).
كشور :
ايران
لينک به اين مدرک :
بازگشت