شماره ركورد كنفرانس :
4062
عنوان مقاله :
INCLUSION SUBMODULE GRAPH OF A MODULE
پديدآورندگان :
MAHDAVI LOTF ALI l.a.mahdavi154@gmail.com University of Mazandaran, Babolsar, Iran , TALEBI YAHYA talebi@umz.ac.ir University of Mazandaran, Babolsar, Iran
كليدواژه :
Inclusion submodule graph , Diameter , Girth , Clique number , Chromatic number.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گراف و تركيبيات جبري
چكيده فارسي :
Let M be a unitary left R-module where R is a ring
with identity. The inclusion submodule graph of a module M,
denoted by In(M), is an undirected simple graph whose vertex set
V (In(M)), is a set of all non-trivial submodules of M and there
is an edge between two distinct vertices X and Y if and only if
X ⊂ Y or Y ⊂ X. In this paper, we consider several properties
of the graph In(M) such as connectivity, diameter and the girth.
We characterize some modules for which the inclusion submodule
graphs are connected, complete and null. Finally, we study the
clique number and the chromatic number of In(M).