شماره ركورد كنفرانس :
4079
عنوان مقاله :
Weighted composition followed by differentiation operators on Zygmund spaces
پديدآورندگان :
Esmaeili K. esmaeili@ardakan.ac.ir Ardakan University
كليدواژه :
Weighted composition operator , differentiation , Zygmund spaces
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
Let $\mathcal{H}(\BD)$ denote the space of analytic functions on the open unit disk $\BD$.
Let $u\in \mathcal{H}(\BD)$ and $\var$ be an analytic self-map of $\BD$.
The product of the differentiation operator and the weighted composition operator $uC_\var$ on $\mathcal{H}(\BD)$
is defined by
$$D uC_{\var}(f)=(u\cdot (f\circ \var)) =u (f\circ \var)+u\var (f \circ \var), \ f\in\mathcal{H}(\BD). $$
They are called weighted composition followed by differentiation operators.
In this paper, we characterize the boundedness and compactness of
$DuC_\var$ acting on Zygmund spaces, in terms of $u, \var$, their
derivatives and the n-th power $\var^n$ of $\var.$