شماره ركورد كنفرانس :
4079
عنوان مقاله :
Virtually Semisimple Modules and Two Generalizations of Wedderburn-Artin and Krull-Schmidt Theorems with Applications
پديدآورندگان :
Behboodi .M mbehbood@cc.iut.ac.ir Isfahan University of Technology , Daneshvar .A a.daneshvar@math.iut.ac.ir Isfahan University of Technology , Vedadi .M mrvedadi@cc.iut.ac.ir Isfahan University of Technology
تعداد صفحه :
5
كليدواژه :
Virtually simple module , virtually semisimple module , left principal ideal domain , V , domain , Wedderburn , Artin Theorem , Krull , Schmidt Theorem
سال انتشار :
1395
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
An $R$-module $M$ is called {\it virtually semisimple} if each submodule of $M$ is isomorphic to a direct summand of $M$, and $M$ is called {\it virtually simple} if $M\neq (0)$ and $N\cong M$ for each $0\neq N\leq M$. By using these notions, we give natural generalizations of the Wedderburn-Artin and Krull-Schmidt Theorems. Some applications of these theorems are indicated. For instance, it is shown that the following statements are equivalent for a ring $R$: (i) Every finitely generated left (right) $R$-module is virtually semisimple; (ii) Every finitely generated left (right) $R$-module is a direct sum of virtually simple modules; (iii) $R\cong\prod_{i=1}^{k} M_{n_i}(D_i)$ for some principal ideal V-domains $D_i$ s; and {\rm (iv)} Every non-zero finitely generated left $R$-module can be written uniquely in the form $ Rm_1 \oplus\ldots\oplus Rm_k$ where each $Rm_i$ is a simple $R$-module or a left virtually simple direct summand of $R$.
كشور :
ايران
لينک به اين مدرک :
بازگشت