شماره ركورد كنفرانس :
4079
عنوان مقاله :
On 2-primal differential polynomial rings
پديدآورندگان :
Moussaviy .A moussavi.a@modares.ac.ir Tarbiat Modares University , Azimi .M Azimidr45@Gmail.com Tarbiat Modares University
كليدواژه :
Ore extensions , 2 , primal rings , nil , (α , δ) , compatible rings
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
Let R be a ring with a derivation δ. In this note we show that if R is a nil-δ-compatible ring, then R is 2-primal if and only if the differential polynomial ring R[x; δ] is 2-primal if and only if Nil(R) = Nil∗(R; δ) if and only if Nil∗(R[x; δ]) = Ni(R)[x; δ] if and only if every minimal δ-prime ideal of R is completely prime. The class of nil δ-compatible rings contains properly reduced rings and δ-compatible rings, and contrary to the notion of δ-compatible 2-primal rings,
nil-δ-compatible 2-primal rings extend to polynomial rings, triangular matrix rings and various ring extensions