كليدواژه :
two , rainbow , domination , dominating set
چكيده فارسي :
Let $G=(V,E)$ be a simple graph and $k\in \mathbb{N}$. A $k$-rainbow dominating function of $G$ is a function
$f:V\rightarrow 2^{\{1,...,k\}} $ such that for each $v\in V$ with $f(v) =\emptyset$, $\bigcup_{u\in N(v)} f(u) = \{1,...,k\}.$ The
minimum of $\sum_{v\in V} |f(v)|$ over all $k$-rainbow dominating functions $f$ of $G$ is denoted by
$\gamma_{rk}(G)$. In this paper, we consider small $k$ and study some problems related to $k$-rainbow domination theory.