شماره ركورد كنفرانس :
4079
عنوان مقاله :
On the location of the third largest eigenvalue of graphs
پديدآورندگان :
Oboudi Mohammad Reza mr_oboudi@shirazu.ac.ir Shiraz University
تعداد صفحه :
3
كليدواژه :
Eigenvalues of graphs , third largest eigenvalue
سال انتشار :
1395
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
‎Let $G$ be a graph with eigenvalues $\lambda_1(G)\geq\cdots\geq\lambda_n(G)$‎. ‎In this paper we study the possible value of $\lambda_3(G)$‎. ‎We prove that for every graph $G$‎, ‎$\lambda_3(G)\in\{-\sqrt{2},-1,\frac{1-\sqrt{5}}{2}\}$ or $\lambda_3(G)\in(-.59,-.5)\cup(-.496,\infty)$‎. ‎In addition‎, ‎we find that‎ ‎$\lambda_3(G)=-\sqrt{2}$ if and only if $G\cong P_3$ and $\lambda_3(G)=\frac{1-\sqrt{5}}{2}$ if and only if $G\cong P_4$‎, ‎where $P_n$ is the path on $n$ vertices‎. ‎We find some formulas for computing the characteristic polynomials of graphs $G$ such that $\lambda_3(G) 0$‎. ‎As a consequence we obtain a relation between the multiplicity of $-1$ and the sign of the third largest eigenvalue of graphs
كشور :
ايران
لينک به اين مدرک :
بازگشت