شماره ركورد كنفرانس :
4109
عنوان مقاله :
Gene identification using independent screening procedure
پديدآورندگان :
Kazemi M Department of Statistics, Shahrood University of Technology, Shahrood, Iran , Arashi M Department of Statistics, Shahrood University of Technology, Shahrood, Iran , Shahsavani D Department of Statistics, Shahrood University of Technology, Shahrood, Iran
تعداد صفحه :
11
كليدواژه :
Additive model , Cardiomyopathy dataset , Sparsity , Ultra , high dimension , Variable screening
سال انتشار :
1396
عنوان كنفرانس :
يازدهمين سمينار ملي احتمال و فرآيندهاي تصادفي
زبان مدرك :
انگليسي
چكيده فارسي :
In a survival analysis, identifying influential genes is a crucial task in ultra-high dimension. In this paper, we particularly analyze Cardiomyopathy microarray data in a ultra-high dimensional setting and propose a screening method to identify most important influential genes. In this respect, we use an additive model and approximate the nonparametric additive components using a B-spline basis. We first apply a fast screening procedure to reduces the number of covariates to a moderate order and then apply the adaptive group Lasso to perform the final variable selection and parameter estimation simultaneously
كشور :
ايران
لينک به اين مدرک :
بازگشت