شماره ركورد كنفرانس :
4155
عنوان مقاله :
Applications of Statistical Machine Learning in Neuroimaging
پديدآورندگان :
Saleh Elahe e.saleh3@ymail.com Tehran University of Medical Sciences , Najibi Seyed Morteza mor.najibi@gmail.com Shiraz University , Zare Sadeghi Arash zsadeghi@alumnus.tums.ac.ir Iran University of Medical Sciences in Tehran
تعداد صفحه :
4
كليدواژه :
FMRI data , Machine learning , Multivoxel Pattern Analysis (MVPA) , Statistical Parametric Mapping , Neuroimaging.
سال انتشار :
1396
عنوان كنفرانس :
اولين همايش ملي روشهاي مدرن در قيمت گذاري هاي بيمه اي و آمارهاي صنعتي
زبان مدرك :
انگليسي
چكيده فارسي :
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive method to recognize brain functions by using signal changes associated with the brain activity. The technique has become a tool in basic, clinical and cognitive neuroscience. In this paper, we want to explain the key role of fMRI data analysis that is able to find the parts of brain that are involve in a mechanism, or to determine the changes that occur in brain activities due to a brain lesion. Hence, we aim to review and discuss the methods of statistical machine learning techniques as one of the most existing recent developments to analyze the fMRI data.
كشور :
ايران
لينک به اين مدرک :
بازگشت