شماره ركورد كنفرانس :
4179
عنوان مقاله :
A Novel Methodology for Clustering Using the Kullback-Leibler Index
پديدآورندگان :
Golzardi Elaheh Golzardy@gmail.com Department of Computer Engineering, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran. , Fatemi Adel Department of Statistics, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran.
تعداد صفحه :
12
كليدواژه :
Information entropy , Kullback–Leibler distance , clustering , social networks.
سال انتشار :
1395
عنوان كنفرانس :
اولين مسابقه كنفرانس بين المللي جامع علوم مهندسي در ايران
زبان مدرك :
انگليسي
چكيده فارسي :
High-dimensional data clustering is considered as a difficult task in data analysis. In fact, clustering aims to maximize main data retention while, seeking minimum space to present and display cluster. In this paper, Kullback–Leibler distance based on the information entropy is used and a novel methodology based on undirected weighted pages with high compatibility is presented. The proposed methodology was tested on three real data sets, indicating higher efficacy and accuracy in comparison with other algorithms. The results show that the methodology can be used for data clustering effectively, since indicated optimum operation in time complexity and clustering results.
كشور :
ايران
لينک به اين مدرک :
بازگشت