شماره ركورد كنفرانس :
4255
عنوان مقاله :
NUMERICAL SOLUTION WITH HIGHER ORDER ACCURACY FOR OPTION PRICING WITH STOCHASTIC VOLATILITY USING A GEOMETRICAL TRANSFORMATION
پديدآورندگان :
AKBARI RAHMAN akbarir042@gmail.com Student , JAHANDIDEH MOHAMMAD TAGHI jahandid@cc.iut.ac.ir assistant professor , MOKHTARI REZA mokhtari@cc.iut.ac.ir ---
تعداد صفحه :
5
كليدواژه :
Option pricing‎ , ‎Heston equation‎ , ‎stochastic volatility‎ , ‎compact finite difference scheme‎ , ‎geometrical transformation‎.
سال انتشار :
1395
عنوان كنفرانس :
چهارمين همايش رياضيات و علوم انساني
زبان مدرك :
انگليسي
چكيده فارسي :
‎In this paper using a geometrical transformation we propose a‎ ‎new compact finite difference (CFD) method based on the alternating direction implicit (ADI) approach for solving‎ ‎Heston equation that plays an important role in financial option‎ ‎pricing theory‎. ‎A feature of this time-dependent two-dimensional‎ ‎convection-diffusion-reaction equation is the presence of a mixed‎ ‎spatial-derivative term which stems from the correlation between two underlying‎ ‎stochastic processes for the asset price and its variance‎. ‎Proposed method leads to a‎ ‎system of linear equations involving banded matrices and‎ ‎the rate of convergence of the method is of order $O(k^2+h_1^8+h_2^8)$ where $k$‎, ‎$h_1$ and $h_2$ are time and space‎ ‎step-sizes‎, ‎respectively‎. ‎Stability analysis of the method is investigated by‎ ‎the matrix method‎. ‎Numerical results obtained by the‎ ‎proposed method imply that our method is effective and applicable for solving such problems‎.
كشور :
ايران
لينک به اين مدرک :
بازگشت