كليدواژه :
weighted differentiation composition operator , $\mathcal{Q}_K(p , q)$ space , classical weighted space
چكيده فارسي :
For $-2 q \infty$ and $0 p \infty$, the $\mathcal{Q}_K(p,q)$ space is the space of all analytic functions
on the open unit disk $\mathbb{D}$ satisfying
$$\sup_{a\in\mathbb{D}}\int_\mathbb{D}|f (z)|^p(1-|z|^2)^q K(g(z,a))dA(z) \infty,$$
where $g(z,a)=\log\frac{1}{|\sigma_a(z)|}$ is the Green s function on $\mathbb{D}$ and $K:[0,\infty)\rightarrow[0,\infty)$,
is a right-continuous and non-decreasing
function.
The boundedness and compactness of the weighted differentiation composition operators
from $\mathcal{Q}_K(p,q)$ spaces and $\mathcal{Q}_{K,0}(p,q)$ spaces into the classical weighted spaces and the little classical weighted spaces
are characterized.