شماره ركورد كنفرانس :
4329
عنوان مقاله :
Autocommutators and Engel groups
پديدآورندگان :
Safa Hesam h.safa@ub.ac.ir Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran , Arabyani Homayoon arabyani h@yahoo.com Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
كليدواژه :
Autocommutator subgroup , auto , Engel element , 2 , auto , Engel group.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گروههاي ايراني
چكيده فارسي :
For a given group G, with an element x in G and automorphism a in Aut(G), the n-th autocommutator
[x;n a] is defined recursively by [x;a] = x1xa and [x;n a] = [[x;n1 a];a] for all
n 1. Th e group G is said to be n-auto-Engel if [x;n a] = [a;n x] = 1, for all x 2 G and all
a 2 Aut(G), where [a;x] = [x;a]1. In the presented paper, we study the structure of 2-auto-
Engel groups and show that these groups indeed satisfy the equation a(x)a1(x) = x2, for all
x 2 G and a 2 Aut(G).