شماره ركورد كنفرانس :
4338
عنوان مقاله :
Maps preserving partial-isometries on Hilbert $C^*$-modules
پديدآورندگان :
Amyari Maryam amyari@mshdiau.ac.ir Department of Mathematics, Mashhad Branch,Islamic Azad University, Mashhad, Iran;
, Majidi Alireza majiddi@yahoo.com Department of Mathematics, Mashhad Branch,Islamic Azad University, Mashhad, Iran; ara\underline{ }
كليدواژه :
Partial , isometry , preserving linear map , Hilbert C* , module
عنوان كنفرانس :
سومين سمينار ملي نظريه عملگرها و كاربردهاي آن
چكيده فارسي :
Let $\mathcal{H}$ be a Hilbert space and $E$ be a Hilbert $\mathcal{C}^*$-module over a $C^*$-algebra $\mathcal{A}$ of compact operators on $\mathcal{H}$ and $\mathcal{L}(E)$ the set of all adjointable maps on $E$. In this talk, we show that if $\varphi:\mathcal{L}(E)\to \mathcal{L}(E)$ preserves partial-isometry in both directions, then there are unitary operators $U, V\in \mathcal{L}(E)$ such that \begin{eqnarray*} \varphi(T)=UTV ~~\textsl{or} ~~\varphi(T)=UT^{tr}V \end{eqnarray*} or \begin{eqnarray*} \varphi(T)=V^*TU^* ~~\textsl{or}~ ~\varphi(T)=V^*T^{tr}U^*, \end{eqnarray*} where $T^{tr}$ is the transpose of $T$ with respect to an arbitrary but fixed orthonormal basis of $E$. \end{abstract}}