شماره ركورد كنفرانس :
4338
عنوان مقاله :
Norm inequalities related to accretive-dissipative operator matrices
پديدآورندگان :
Ghaemi Mohammad Bagher mghaemi@iust.ac.ir School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran;
; , Kaleibary Venus v.kaleibary@gmail.com School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran;
كليدواژه :
Operator matrix , accretive , dissipative operator , unitarily invariant norm , inequality
عنوان كنفرانس :
سومين سمينار ملي نظريه عملگرها و كاربردهاي آن
چكيده فارسي :
An operator on a Hilbert space is accretive-dissipative if its real and imaginary part are both positive. In this paper, $T$ is an accretive-dissipative operator matrix and we prove some norm inequalities for $|T|^r$ when $ 0 r \leq 1$. These inequalities, extend some known results.