شماره ركورد كنفرانس :
4380
عنوان مقاله :
The annihilator graph of a module
پديدآورندگان :
K. Hamidizadeh k.hamidizadeh@pnu.ac.ir Payame Noor University; , Gh. Aghababaei g-aghababaei@yahoo.com Applied Sciences University;
كليدواژه :
Annihilator graph , annihilator ideal , zero divisor graph.
عنوان كنفرانس :
دومين كنفرانس جبر محاسباتي، نظريه محاسباتي اعداد و كاربردها
چكيده فارسي :
Let R be a commutative ring and M be an R-module, if x 2 M, Ix := fr 2 RjrM Rxg and
ann(IxM = fr 2 RjrIxM = 0g. The annihilator graph of module M over ring R is the graph
AG(RM) with vertices UMR := fx 2 Mj0 6= Ix 6= Rg and two vertices x and y are adjacent if and
only if ann(IxIyM) 6= ann(IxM)[ann(IyM). It follows that if M be a faitful R-module, then each
edge of G(RM) is an edge of AG(RM). We show that ifM be amultiplicationmodule then AG(RM)
is connected with diameter at most three and with girth at most four provided that AG(RM) has a
cycle.