شماره ركورد كنفرانس :
4474
عنوان مقاله :
Training Neural Networks Based on Imperialist Competitive Algorithm for Predicting Earthquake Intensity
Author/Authors :
Mohsen Moradi Amirkabir University of Technology – Tehran Polytechnic Department - Mathematics and Computer Science
كليدواژه :
Artificial neural network , earthquake intensity , imperialist competitive algorithm , multilayer perceptron
عنوان كنفرانس :
همايش بين المللي افق هاي نوين در علوم پايه و فني و مهندسي
زبان مدرك :
انگليسي
چكيده لاتين :
In this study we determined neural network weights and biases by Imperialist Competitive Algorithm (ICA) in order to train network for predicting earthquake intensity in Richter. For this reason, we used dependent parameters like earthquake occurrence time, epicenter's latitude and longitude in degree, focal depth in kilometer, and the seismological center distance from epicenter and earthquake focal center in kilometer which has been provided by Berkeley data base. The studied neural network has two hidden layer: its first layer has 16 neurons and the second layer has 24 neurons. By using ICA algorithm, average error for testing data is 0.0007 with a variance equal to 0.318. The earthquake prediction error in Richter by MSE criteria for ICA algorithm is 0.101, but by using GA, the MSE value is 0.115
كشور :
ايران
تعداد صفحه 2 :
10
كلمات كليدي :
‎Artificial neural network,earthquake intensity,imperialist competitive algorithm,multilayer perceptron.
از صفحه :
1
تا صفحه :
10
لينک به اين مدرک :
بازگشت