شماره ركورد كنفرانس :
3196
عنوان مقاله :
The Investigation of the existence, behavior, and multiplicity of solutions for -p LaPlacian boundary value problems under the Dirichlet boundary conditions
عنوان به زبان ديگر :
The Investigation of the existence, behavior, and multiplicity of solutions for -p LaPlacian boundary value problems under the Dirichlet boundary conditions
Author/Authors :
Morteza Fathimoghadam Islamic Azad University, Natanz Branch
كليدواژه :
Laplacian , quadrature method and time mapping , third-order non-linear functions , multiplicity of results
عنوان كنفرانس :
اولين كنگره بين المللي تحقيقات نوين و پيشرفته در علوم و فناوري
چكيده لاتين :
Expression and description of most physical and
engineering phenomena such as wave
propagation, heat transfer, magnetism, etc. lead
to the investigation and equational solution of
hyperbolic, parabolic, and elliptic kinds. These
equations are from basic topics of boundary value
and initial value problems. In this paper, we
investigate the problem of quasi-linear boundary:
−(|𝑢′ |𝑝−2𝑢′ )′ = 𝜆 𝑓(𝑢) 𝑖𝑛 (0,1)
𝑢(0) = 𝑢(1) = 0
Where p and ƛ are two actual parameters and p
>1, 𝜆 > 0 and f are a nonlinear third-order
function.
To obtain the number of solutions of the above
problem, we use quadrature method