شماره ركورد كنفرانس :
4518
عنوان مقاله :
Comparison different neural machine learning models for predicting of nano-size pharmaceuticals
Author/Authors :
J Sayyad Amin Chemical Engineering Department, Guilan, Rasht , S Ashraf Chemical Engineering Department, Guilan, Rasht , M Yousefi Chemical Engineering Department, Guilan, Rasht
كليدواژه :
Artificial Neural Network , Nanoprecipitation , Microfluidic reactor
سال انتشار :
2011
عنوان كنفرانس :
The 7th International Chemical Engineering Congress & Exhibition (IChEC 2011
زبان مدرك :
انگليسي
چكيده لاتين :
In this paper, we investigate the applicability of MATLAB to design, train and test an artificial neural network (ANN) to determine the relationships of variables in drug nanoprecipitation using microfluidic reactor. Effective variables on nanoparticle size are computed as ANN inputs and the particle size is considered to be the output. After the training on the input–output process, the AAN predicted values were compared with the other available AAN model which is obtained from INForm software (INForm v3.5, Intelligensys, UK) [1]. Comparing coefficient of determination (R2), regression coefficient (R) values of the MATLAB-ANN model and INForm-ANN model, one can conclude that the first model predicted the particle size with more accuracy than the other.
كشور :
ايران
تعداد صفحه 2 :
8
از صفحه :
1
تا صفحه :
8
لينک به اين مدرک :
بازگشت