شماره ركورد كنفرانس :
3540
عنوان مقاله :
A new sparse representation algorithm for signal classication
Author/Authors :
Azam Andalib Department of Computer Engineering, Kashan, Iran , Morteza Babamir Department of Computer Engineering, Kashan, Iran
كليدواژه :
sparse representation , semi-supervised learning , dictionary learning , Local linear embedding
سال انتشار :
1392
عنوان كنفرانس :
همايش بين المللي هوش مصنوعي و پردازش سيگنال
زبان مدرك :
لاتين
چكيده لاتين :
The performance of many Sparse Representation (SR) based signal classication tasks is highly dependent on the availability of the datasets with a large amount of labeled data points. However, in many cases, accessing to sucient labeled data may be expensive or time con- suming, whereas acquiring a large amount of unlabeled data is relatively easy. In this paper, we propose a new SR based classication method which utilizes the information of the unlabeled data as well as the labeled data. Experimental results show that the proposed method outperforms the state of the art SR based classication methods.
كشور :
ايران
تعداد صفحه 2 :
9
از صفحه :
1
تا صفحه :
9
لينک به اين مدرک :
بازگشت