شماره ركورد كنفرانس :
3540
عنوان مقاله :
Discriminative Spoken Language Understanding Using Statistical Machine Translation Alignment Methods
Author/Authors :
Mohammad Aliannejadi Amirkabir University of Technology, Tehran, Iran , Shahram Khadivi Amirkabir University of Technology, Tehran, Iran , Saeed Shiry Amirkabir University of Technology, Tehran, Iran , Mohammad Hadi Bokaei Sharif University of Technology, Tehran, Iran
كليدواژه :
natural language processing , spoken language understanding , statistical machine trans- lation
سال انتشار :
1392
عنوان كنفرانس :
همايش بين المللي هوش مصنوعي و پردازش سيگنال
زبان مدرك :
لاتين
چكيده لاتين :
In this paper, we study the discriminative modeling of Spo- ken Language Understanding (SLU) using Conditional Random Fields (CRF). Previous discriminative approaches to SLU have been dependent on n-gram features.We have used Statistical Machine Translation (SMT) alignment methods to align the abstract labels, and consider those align- ments as the labels of the aligned words. Using the proposed alignment method and state transition features, the model performance has im- proved. Furthermore, we have compared the proposed method with two baseline approaches; Hidden Vector States (HVS) and baseline-CRF. The results show that for the F-measure the proposed method outperforms HVS by 1:74% and baseline-CRF by 1:7% on ATIS corpus.
كشور :
ايران
تعداد صفحه 2 :
8
از صفحه :
1
تا صفحه :
8
لينک به اين مدرک :
بازگشت