شماره ركورد كنفرانس :
3750
عنوان مقاله :
A Pseudospectral Method for solving a variable order time fractional diffusion equation
پديدآورندگان :
Soheila Soheila Department of Mathematics, Faculty of Sciences,University of Zanjan, Zanjan, Iran , Shokri Ali Department of Mathematics, Faculty of Sciences,University of Zanjan, Zanjan, Iran
كليدواژه :
Variable order time fractional diffusion equation , Mittag , Leffler function , Variable order fractional derivative , Pseudospectral method
عنوان كنفرانس :
دومين كنفرانس ملي فيزيك رياضي ايران
چكيده فارسي :
In this paper, a pseudospectral method with the Lagrange polynomial basis on Chebyshev points is proposed to solve the variable order time fractional diffusion equations (VOTFDEs). This method is based on the evaluation of the Mittag-Leffler function on matrix arguments for the integration along the time variable to preserve the high accuracy of the spectral method. Some examples are performed to illustrate the accuracy and efficiency of the proposed method.