شماره ركورد كنفرانس :
3704
عنوان مقاله :
Comparison of SVM and RF Algorithms for Crop Mapping Using Bi-Temporal Optical and Radar Data with Limited Training Samples
عنوان به زبان ديگر :
Comparison of SVM and RF Algorithms for Crop Mapping Using Bi-Temporal Optical and Radar Data with Limited Training Samples
پديدآورندگان :
Khosravi Iman iman.khosravi@ut.ac.ir University of Tehran , Niazmardi Said niazmardi@ut.ac.ir Graduate University of Advanced Technology , Safari Abdoreza safari@ut.ac.ir University of Tehran , Homaiooni Said homayouni@uOttawa.ca University of Ottawa
تعداد صفحه :
6
كليدواژه :
ماشين بردار پشتيبان , جنگل تصادفي , طبقه بندي محصولات كشاورزي , تصوير نوري , تصوير راداري
سال انتشار :
1396
عنوان كنفرانس :
پنجمين كنفرانس بين المللي در مهندسي برق و كامپيوتر با تاكيد بر دانش بومي
زبان مدرك :
انگليسي
چكيده فارسي :
This paper aims to compare two state-of-the-art classification algorithms, namely Support Vector Machine (SVM) and Random Forest (RF) algorithms, in terms of accuracy and running time, in order to crop mapping from multi-temporal optical and radar images with limited training samples. The optical data are RapidEye images and the radar data are UAVSAR images. The case study is an agricultural area near Winnipeg, Manitoba, Canada. From each RapidEye image, 38 optical features, and from each UAVSAR image, 49 radar features were extracted. The results indicated RF was more efficient in the classification of radar features, while SVM was more efficient in the classification of optical and stacked features. Furthermore, regarding running time, RF was much faster than SVM in all scenarios.
كشور :
ايران
لينک به اين مدرک :
بازگشت