شماره ركورد كنفرانس :
4724
عنوان مقاله :
GROUPOID C*-ALGEBRAS INVERTIBILITY
پديدآورندگان :
Tabatabaie Shourijeh B tabataba@math.susc.ac.ir Professor, Shiraz University, Shiraz؛ , Sadeghpour A poya.h2261@gmail.com PhD Student, Shiraz University, Shiraz؛
كليدواژه :
Inverse semigroup , semi , lattice , tight character , tight filter , ultra , filter , groupoid , groupoid $C^*$ , algebra
عنوان كنفرانس :
|اولين همايش ملي رياضي و آمار
چكيده فارسي :
In this work given a second-countable, Hausdorff, etale, amenable groupoid $ G$ with compact unit space, we show that an element in ${C^{*}(G)} $ is invertible if and only if $\lambda_{x}(a) $ is invertible for every $ x$ in the unit space of $ G$, where $ \lambda_{x} $ refers to the regular representation of $C^{*}(G)$ on $\textit{l}_{2}(G_{x})$. We also prove that, for every $a$ in $C^{*}(G)$, there exists some $ x\in G^{(0)} $ such that $\parallel x \parallel=\parallel \lambda_{x}(a)\parallel $.