شماره ركورد كنفرانس :
4724
عنوان مقاله :
Metric Dimension of Jewel and Jelly _x000C_sh Graphs
پديدآورندگان :
Pejman B b.pejman@edu.ikiu.ac.ir PhD Student, Imam Khomeini International University, Qazvin؛ , payrovi Sh shpayrovi@sci.ikiu.ac.ir Associate Professor, Imam Khomeini International University, Qazvin؛ , Behtoei A a.behtoei@sci.ikiu.ac.ir Assistant Professor, Imam Khomeini International University, Qazvin؛
تعداد صفحه :
4
كليدواژه :
Metric dimension , Resolving set , Jewel graph , Jelly fish graph
سال انتشار :
1397
عنوان كنفرانس :
|اولين همايش ملي رياضي و آمار
زبان مدرك :
انگليسي
چكيده فارسي :
Let $G=(V,E)$ be a connected graph and let $d(u,v)$ denote the distance between vertices $u$ and $v$. A subset $W$ of $V(G)$ is called a resolving set for $G$ if for every $u,v\in V(G)$, there exists $w\in W$ such that $d(u, w)\neq d(v, w)$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$ and is denoted by $dim(G)$. \newline The metric dimension has some applications in robotics, because this parameter can represent the minimum number of locations which uniquely determine the position of a robot moving in a graph space. In this paper we compute the metric dimension of the Jewel graph and Jelly fish graph.
كشور :
ايران
لينک به اين مدرک :
بازگشت