شماره ركورد كنفرانس :
5133
عنوان مقاله :
Classification of Persian Product Reviews Using Neural Networks
پديدآورندگان :
Bahrani Mohammad Allameh Tabataba’i University, Tehran, , Akhavan Karim Sharif University of Technology
تعداد صفحه :
9
كليدواژه :
: Opinion Mining , Text classification , Sentiment analysis , Deep learning
سال انتشار :
1400
عنوان كنفرانس :
دومين همايش ملي هوش مصنوعي و محاسبات نرم
زبان مدرك :
انگليسي
چكيده فارسي :
With the rising influence of reviews on online retail shopping, automated opinion mining of consumer reviews is becoming increasingly important. Opinion mining or the classification of reviews is done using machine learning algorithms or neural networks, yet works in this area for the Persian language are limited. This paper tries to implement and demonstrate the performance of three neural networks by training them on the product reviews dataset from DigiKala, an Iranian e-commerce company. An LSTM and a BiLSTM model are used, and an RNN is used as the baseline to show how effective the aforementioned models are at classifying the samples, which the BiLSTM model shows slightly better results than the other two
كشور :
ايران
لينک به اين مدرک :
بازگشت