شماره ركورد كنفرانس :
5090
عنوان مقاله :
ﭘﺎﺳﺦ ﺧﺼﻮﺻﯿﺎت ﻣﺮﺗﺒﻂ ﺑﺎ ﺑﺮگ اﮐﻮﺗﯿﭗﻫﺎي ﻣﺨﺘﻠﻒ ﻧﻌﻨﺎع ﺑﻪ ﺗﻨﺶ ﮐﻠﺮﯾﺪﺳﺪﯾﻢ
عنوان به زبان ديگر :
Response of leaf attributes of different mint ecotypes to NaCl stress
پديدآورندگان :
ﺣﺴﯿﻨﯽ ﺟﺎﺑﺮ داﻧﺸﮕﺎه ﺗﺮﺑﯿﺖ ﻣﺪرس - داﻧﺸﮑﺪه ﮐﺸﺎورزي - ﮔﺮوه زراﻋﺖ، ايران , ﻃﻬﻤﺎﺳﺒﯽ ﺳﺮوﺳﺘﺎﻧﯽ زﯾﻦاﻟﻌﺎﺑﺪﯾﻦ داﻧﺸﮕﺎه ﺗﺮﺑﯿﺖ ﻣﺪرس - داﻧﺸﮑﺪه ﮐﺸﺎورزي - ﮔﺮوه زراﻋﺖ، ايران , ﭘﯿﺮدﺷﺘﯽ ﻫﻤﺖاﷲ داﻧﺸﮕﺎه ﻋﻠﻮم ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ ﺳﺎري - ﮔﺮوه زراﻋﺖ و اﺻﻼح ﻧﺒﺎﺗﺎت، ايران , ﻣﺪرس ﺛﺎﻧﻮي ﻋﻠﯽ ﻣﺤﻤﺪ داﻧﺸﮕﺎه ﺗﺮﺑﯿﺖ ﻣﺪرس - داﻧﺸﮑﺪه ﮐﺸﺎورزي - ﮔﺮوه زراﻋﺖ، ايران , ﻣﺨﺘﺼﯽ ﺑﯿﺪﮔﻠﯽ ﻋﻠﯽ داﻧﺸﮕﺎه ﺗﺮﺑﯿﺖ ﻣﺪرس - داﻧﺸﮑﺪه ﮐﺸﺎورزي - ﮔﺮوه زراﻋﺖ، ايران , ﺣﻀﺮﺗﯽ ﺳﻌﯿﺪ داﻧﺸﮕﺎه ﺷﻬﯿﺪ ﻣﺪﻧﯽ آذرﺑﺎﯾﺠﺎن - داﻧﺸﮑﺪه ﮐﺸﺎورزي - ﮔﺮوه زراﻋﺖ و اﺻﻼح ﻧﺒﺎﺗﺎت، تبريز
كليدواژه :
اﮐﻮﺗﯿﭗ , ﺗﻨﺶ ﺷﻮري , ﺳﻄﺢ ﺑﺮگ ﻧﻌﻨﺎع
عنوان كنفرانس :
شانزدهمين كنگره ملي علوم زراعت و اصلاح نباتات ايران
زبان كنفرانس :
فارسي-انگليسي
چكيده فارسي :
ﺳﻄﺢ ﺑﺮگ ﯾﮏ ﺷﺎﺧﺺ ﮐﻠﯿﺪي ﺑﺮاي رﺷﺪ و ﺗﻮﻟﯿﺪات ﮔﯿﺎﻫﯽ و ﻋﺎﻣﻞ ﺗﻌﯿﯿﻦﮐﻨﻨﺪه در ﮐﺎراﯾﯽ ﻣﺼﺮف ﻧﻮر ﻣﺤﺴﻮب ﻣﯽﺷﻮد. از ﺟﻤﻠﻪ روشﻫﺎي ﻣﻌﻤﻮل ﺑﺮاي ﺗﺨﻤﯿﻦ ﺳﻄﺢ ﺑﺮگ ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞﻫﺎي رﮔﺮﺳﯿﻮﻧﯽ ﻣﯽﺑﺎﺷﺪ ﮐﻪ ﺳﻄﺢ ﺑﺮگ ﺑﻪ ﻋﻨﻮان ﻣﺘﻐﯿﺮ ﻣﺴﺘﻘﻞ و ﻃﻮل و ﻋﺮض ﺑﺮگ ﺑﻪ ﻋﻨﻮان ﻣﺘﻐﯿﺮ واﺑﺴﺘﻪ ﻣﯽﺑﺎﺷ.ﺪ در اﯾﻦ ﻣﻄﺎﻟﻌﻪ، ﺳﻄﺢ ﺑﺮگ 18 اﮐﻮﺗﯿﭗ ﮔﯿﺎه داروﯾﯽ ﻧﻌﻨﺎع ﺑﺎ روشﻫﺎي ANFIS ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ )RBF و MLP(، رﮔﺮﺳﯿﻮنﻫﺎي ﺧﻄﯽ و ﻏﯿﺮﺧﻄﯽ ﺑﺎ اﺳﺘﻔﺎده از دو ورودي ﻃﻮل و ﻋﺮض ﺑﺮگ در 4 ﺳﻄﺢ ﺗﻨﺶ ﺷﻮري )ﺻﻔﺮ، 2/5، 5 و 7/5 دﺳﯽزﯾﻤﻨﺲ ﺑﺮ ﻣﺘﺮ( ﺗﺨﻤﯿﻦ زده ﺷﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ ﻫﻤﺒﺴﺘﮕﯽ ﺑﺎﻻﯾﯽ ﺑﯿﻦ ﻃﻮل و ﻋﺮض ﺑﺮگ ﺑﺎ ﺳﻄﺢ ﺑﺮگ وﺟﻮد داﺷﺘﻪ اﺳﺖ ﮐﻪ ﻫﻤﺒﺴﺘﮕﯽ ﻋﺮض ﺑﺎ ﺳﻄﺢ ﺑﺮگ ﺑﯿﺸﺘﺮ ﺑﻮد. از ﺑﯿﻦ ﻣﺪلﻫﺎي رﮔﺮﺳﯿﻮﻧﯽ در ﻫﺮ دو ﺑﺮداﺷﺖ و در ﺗﻤﺎﻣﯽ ﺳﻄﺢ ﺗﻨﺶ، ﻣﺪل NLR ﺑﻪ ﻋﻨﻮان ﺑﻬﺘﺮﯾﻦ و دﻗﯿﻖﺗﺮﯾﻦ ﻣﺪل ﻣﻌﺮﻓﯽ ﺷﺪه اﺳﺖ. ﻣﺪل ANFIS در ﻫﺮ دو ﺑﺮداﺷﺖ و در ﺗﻤﺎﻣﯽ ﺳﻄﺢ ﺗﻨﺶ ﺷﻮري ﻧﺴﺒﺖ ﺑﻪ ﺳﺎﯾﺮ ﻣﺪلﻫﺎ دﻗﺖ ﺑﺎﻻﺗﺮ و ﺧﻄﺎي ﮐﻤﺘﺮي داﺷﺘﻪ اﺳﺖ. ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ-ﻫﺎي ﺣﺎﺻﻞ از ﮐﻼﺳﺘﺮ ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ ﺑﯿﺸﺘﺮﯾﻦ ﻣﻘﺪار ﻃﻮل، ﻋﺮض و ﺳﻄﺢ ﺑﺮگ در ﻫﺮ دو ﺑﺮداﺷﺖ و در ﺗﻤﺎم ﺷﺮاﯾﻂ ﺗﻨﺶ ﺷﻮري و ﻫﻤﭽﻨﯿﻦ ﺑﺪون ﺗﻨﺶ ﻣﺮﺑﻮط ﺑﻪ اﮐﻮﺗﯿﭗ 18 E ﺑﻮده ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﺗﻨﺶﻫﺎي ﺷﻮري ﻣﻮﺟﻮد ﭘﺎﯾﺪار ﻣﯽﺑﺎﺷﺪ.
چكيده لاتين :
Leaf area is a key indicator for plant growth and productivity and a determining factor in light use
efficiency. One of the most common methods for estimating leaf area is regression analysis where leaf
area is as independent variable and leaf length and width as dependent variable. In this study, leaf area
of 18 ecotypes of mint with ANFIS, Artificial Neural Network (RBF and MLP) methods, linear and
nonlinear regressions using two leaf length and width inputs at 4 salinity stress levels (0, 2.5, 5 and 7.5
dS/m). The results showed that there was a high correlation between leaf length and width with leaf
area, which was more correlated with leaf area. Among the regression models in both harvests and at
all stress levels, the NLR model is presented as the best and most accurate model. The ANFIS model
had higher accuracy and lower error than both models at both harvest and salinity levels. Cluster
analysis showed that the highest length, width, and leaf area in both harvests and in all salinity and
non-stress conditions belonged to the E18 ecotype, which were resistant to the existing salinity
stresses.