شماره ركورد كنفرانس :
5263
عنوان مقاله :
Jacobi wavelet collocation method for solving fractional pantograph differential equations with boundary conditions
پديدآورندگان :
Nemati Somayeh s.nemati@umz.ac.ir Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. , Bakouei Faezeh faezehbakouei@gmail.com Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
تعداد صفحه :
4
كليدواژه :
Fractional pantograph differential equations , ‎Jacobi wavelet , ‎Riemann , Liouville integral , ‎Caputo derivative , ‎Gauss , Jacobi quadrature
سال انتشار :
1402
عنوان كنفرانس :
54 امين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
A numerical method is proposed for solving fractional pantograph differential equations with boundary conditions‎. ‎First‎, ‎the problem is transformed into an equivalent integral equation‎. ‎Then‎, ‎the unknown function is approximated using the generalized Jacobi wavelet basis functions‎. ‎Gauss-Jacobi quadrature formula together with a suitable set of collocation points help us to reduce the main problem into a system of nonlinear algebraic equations‎. ‎Finally‎, ‎an illustrative example and its results are given‎.
كشور :
ايران
لينک به اين مدرک :
بازگشت