شماره ركورد كنفرانس :
5263
عنوان مقاله :
Zc-EMBEDDED SUBSETS OF A TOPOLOGICAL SPACE
پديدآورندگان :
Zeinali Maryam mzeinaly@yahoo.com Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran. , Mohammadian Rostam mohamadian_r@scu.ac.ir Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
تعداد صفحه :
4
كليدواژه :
The space of minimal prime ideals , Zariski topology , strongly zero , dimensional , basically disconnected , countably cozero complemented , zc , embedded subset , Oc z , space
سال انتشار :
1402
عنوان كنفرانس :
54 امين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
The ring Cc(X) as a subring of the ring C(X) consists of all continuous functions with countable image. Also, the space Min(Cc(X)), the space of minimal prime ideals of Cc(X) with Zariski topology, as a subspace of Spec(Cc(X)) is zero-dimensional but not necessarily a basically disconnected and compact space. We consider some relations between the topological properties of Min(Cc(X)) and the spece X. In this article we introduce zc-embedded of a topological space, Oc z-spaces and countably cozero complemented spaces. Furthermore, by these spaces we obtain some conditions in which Min(Cc(X)) becomes a compact and basically disconnected space.
كشور :
ايران
لينک به اين مدرک :
بازگشت