شماره ركورد كنفرانس :
5356
عنوان مقاله :
Investigation of Evolutionary Optimization Algorithms for Estimating Sandstone Compressive Strength
پديدآورندگان :
Jolfaei Somaie Jolfaei_Somaie@znu.ac.ir Department of Civil Engineering, Faculty of Engineering, University of Zanjan , Lakirouhani Ali Department of Civil Engineering, Faculty of Engineering, University of Zanjan
تعداد صفحه :
9
كليدواژه :
Sandstone compressive strength , Artificial neural network , Evolutionary algorithms , Genetic algorithm , Particle swarm optimization
سال انتشار :
1401
عنوان كنفرانس :
پنجمين كنفرانس ملي مهندسي ژئوتكنيك ايران و دومين كنفرانس بين المللي مهندسي زلزله و ژئوتكنيك لرزه اي
زبان مدرك :
انگليسي
چكيده فارسي :
Directly determining rock compressive strength is both laborious and expensive. As a result, indirect estimation methods, such as artificial neural networks, are employed. Input parameters, such as quartz content, dry density, and Brazilian tensile strength, have been used to predict the compressive strength of sandstone. genetic algorithm (GA) and particle swarm optimization (PSO) were selected to improve network training using evolutionary optimization algorithms effectiveness. The results demonstrate that the PSO model achieved the best estimation performance with an of 0.0214 and of 0.95. The linear regression model exhibited inferior performance with an of 0.87.
كشور :
ايران
لينک به اين مدرک :
بازگشت