شماره ركورد كنفرانس :
5362
عنوان مقاله :
Optimal scaling of the memoryless quasi-Newton updating formulas
پديدآورندگان :
Babaei-Kafaki Saman sbk@semnan.ac.ir Free University of Bozen-Bolzano
تعداد صفحه :
4
كليدواژه :
Nonlinear programming , quasi–Newton update , scaling , condition number , eigenvalue
سال انتشار :
1402
عنوان كنفرانس :
دوازدهمين سمينار جبر خطي و كاربردهاي آن
زبان مدرك :
انگليسي
چكيده فارسي :
Matrix approximations generated by the quasi-Newton (QN) updates may be generally vulnerable to ill-conditioning. Thus, the QN algorithms for unconstrained optimization may fail to suggest a proper trajectory to the solution. Here, by matrix analyses, it is discussed that how the classic scaling schemes of the QN algorithms can be modified to make further improvement in the computational stability of the methods. The argument mainly centers on a well-know open problem.
كشور :
ايران
لينک به اين مدرک :
بازگشت