شماره ركورد كنفرانس :
5362
عنوان مقاله :
Linear preservers of G-matrices on M2 ‎
پديدآورندگان :
Armandnejad Ali armandnejad@vru.ac.ir Shahid Bahonar University of Kerman؛ Vali-e-Asr University of Rafsanjan , Golshan Setareh setareh.golshan@gmail.com Vali-e-Asr University of Rafsanjan
تعداد صفحه :
4
كليدواژه :
G , matrices , linear preserver , J , orthogonal matrices
سال انتشار :
1402
عنوان كنفرانس :
دوازدهمين سمينار جبر خطي و كاربردهاي آن
زبان مدرك :
انگليسي
چكيده فارسي :
Let Mn be the set of all n×n real matrices. A nonsingular matrix A ∈ Mn is called a G-matrix if there exist nonsingular diagonal matrices D1 and D2 such that A−T= D1AD2, where A−T denotes the transpose of the inverse of A. Let Gn be the set of all n×n G-matrices. A linear operator T : Mn → Mn is called a linear preserver of G-matrices if T(Gn) ⊆ Gn. The purpose of this paper is to find the structure of the linear operator preserving G-matrices on M2.
كشور :
ايران
لينک به اين مدرک :
بازگشت