كليدواژه :
فناوري نظارتي , فناوري تنظيمگري , رگ تك , فناوري رگولاتوري , هوش مصنوعي
چكيده فارسي :
مقاله حاضر تلاشي است براي بررسي عميق مفهوم فناوري نظارتي و فناوري تنظيمگري (رگولاتوري) با بهرهگيري از هوش مصنوعي و ارائهي بررسي موشكافانهاي از مزايا، ويژگيها، و چالشهاي پيادهسازي اين فناوري براي بانك مركزي ايران و ساير بانكها. در اين گزارش، ابتدا به معرفي مفهوم فناوري تنظيمگري (رگتك) پرداخته ميشود و مرز آن با فناوريهاي ديگر مانند فينتك و تفاوت آن با (فناوري نظارتي) ساپتك بيان ميشود. همچنين، زمينههاي موضوعي اين فناوري نيز مورد بررسي قرارمي گيرد. سپس، مزاياي آن مورد بررسي قرار گرفته كه اين شامل افزايش كارايي و كيفيت نظارت، كاهش ريسكهاي مالي، بهبود تجربه مشتريان، و توانايي تشخيص و پيشبيني تغييرات در بازارها ميباشد. همچنين، چالشهاي پيادهسازي اين فناوري براي بانك مركزي ايران و بانكها مورد بحث و بررسي قرار خواهد گرفت كه شامل نياز به سرمايهگذاري بالا، مسائل امنيتي و حريم خصوصي، و چالشهاي مرتبط با تطبيق با تغييرات سريع در فناوري و قوانين است. در نهايت، به بررسي نقش هوش مصنوعي در راهحلهاي رگتك پرداخته شده و جزئيات پيادهسازي رگتك در بانك انگلستان به عنوان يك مطالعه موردي مورد توجه قرارخواهد گرفت. در نتيجه، اين مقاله نشان ميدهد كه رگتك با هوش مصنوعي ميتواند بهبود قابل توجهي در عملكرد بانك مركزي ايران و بانكهاي ديگر به همراه داشته باشد. با اين حال، براي پيادهسازي موفق اين فناوري، نيازمند سرمايهگذاري مناسب و مديريت مهارتهاي فني است و مشكلات مرتبط با امنيت و حفظ حريم خصوصي دادهها را بايد در نظر گرفت. همچنين، توجه به ملاحظات اخلاقي و هماهنگي بين بخشهاي مختلف ادارات و بانكها نيز از اهميت بالايي برخوردار است.
چكيده لاتين :
Recent years have witnessed increased regulatory requirements in response to globalization, technological advancements, and increasing complexity within the financial sector. Central banks play a crucial role in ensuring the stability and integrity of the financial system while promoting innovation and efficiency. Consequently, enhancing regulatory and supervisory processes in central banks to improve effectiveness, accuracy, and transparency in overseeing the financial industry and preventing unwanted financial incidents has become paramount. In recent years, RegTech has emerged as a popular trend in financial regulatory technology. It encompasses tools and technologies that central banks have increasingly focused on alongside supervisory technologies over the past decade. These technologies aim to enhance financial stability monitoring, including early warning systems for financial market risks, digital financial risk identification, cross-border capital surveillance, anti-money laundering supervision, and various other areas. This article explores supervisory technology and regulatory technology (RegTech) within the context of artificial intelligence (AI), providing a comprehensive analysis of their implementation benefits, features, and challenges for the Central Bank of Iran and other financial institutions. Initially, it introduces RegTech, distinguishing it from other technologies like FinTech and supervisory technology (SupTech). The thematic areas of RegTech are examined, highlighting its role in enhancing efficiency, improving supervision quality, mitigating financial risks, enhancing customer experience, and predicting market changes. Furthermore, the article discusses the foundational technologies underpinning RegTech. These include Natural Language Processing (NLP) for analyzing unstructured data, Big Data analytics for identifying patterns and anomalies indicative of compliance risks, cloud computing for cost-effective and scalable data storage and processing, robotic process automation (RPA) for automating compliance tasks, Internet of Things (IoT) devices for collecting data from physical assets, blockchain for transparency and traceability in compliance processes, and Artificial Intelligence (AI) and machine learning for enhancing operational efficiency and risk management. Moreover, the article discusses the challenges associated with implementing RegTech for the Central Bank of Iran and other banks, including the need for substantial investment. It emphasizes the pivotal role of AI in RegTech solutions, supported by a case study on RegTech implementation at the Bank of England. The study concludes that AI-powered RegTech has the potential to significantly enhance operational performance. However, successful deployment requires adequate investment and proficient technical skills management. Addressing security, data privacy concerns, ethical considerations, and fostering inter-departmental and inter-bank coordination are critical for successful implementation.