شماره ركورد كنفرانس :
143
عنوان مقاله :
Galerkin weighted residual method with high-order trial functions for convection diffusion problem
عنوان به زبان ديگر :
Galerkin weighted residual method with high-order trial functions for convection diffusion problem
پديدآورندگان :
Arefmanesh A. نويسنده , Niroumand A نويسنده , Mohseni P نويسنده
تعداد صفحه :
4
كليدواژه :
Galerkin weighted residual method , Peclet number , unwinding , Convection Diffusion Equation
عنوان كنفرانس :
مجموعه مقالات بيست و دومين كنفرانس سالانه بين المللي مهندسي مكانيك
زبان مدرك :
فارسی
چكيده فارسي :
A stabilized Galerkin weighted residual method using high-order trial functions is proposed to obtain closed-form solutions for one-dimensional convection-diffusion equation at high Peclet numbers. In this method, an approximate solution, written as a linear expansion of known global trail functions multiplied by unknown coefficients, is substituted into the differential equation yielding a residual. Subsequently, the integral over the problem domain of the residual weighted by each of the trial functions is set to zero resulting in a system of algebraic equations for the unknown coefficients. Solving the system of equations analytically yields a closed-form solution for the problem. To obtain stable solutions for convection-domained cases, high order polynomials are employed as trial functions. The obtained results are in close agreements with the analytical solution for a wide range of Peclet numbers
شماره مدرك كنفرانس :
3817001
سال انتشار :
1393
از صفحه :
1
تا صفحه :
4
سال انتشار :
0
لينک به اين مدرک :
بازگشت