شماره ركورد كنفرانس :
5517
عنوان مقاله :
Safe Controller for Uncertain Nonlinear Systems using Model-based Reinforcement Learning
پديدآورندگان :
Rashidian Sajjad Sajjad.rashidian@yahoo.com Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Eng., Faculty of NewSciences and Technologies, University of Tehran, Tehran, Iran , Alipour Khalil k.alipour@ut.ac.ir Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Eng., Faculty of NewSciences and Technologies, University of Tehran, Tehran, Iran
تعداد صفحه :
6
كليدواژه :
Barrier Lyapunov function , reinforcement learning , safe control
سال انتشار :
1402
عنوان كنفرانس :
نهمين كنفرانس بين المللي كنترل، ابزار دقيق و اتوماسيون
زبان مدرك :
انگليسي
چكيده فارسي :
In this paper a reinforcement learning algorithm is presented to solve an infinite horizon optimal control problem for uncertain control-affine nonlinear systems under state constraint. We first develop a safe controller using time derivative of barrier Lyapunov function and then we use this to modify an actor-critic-identifier approach to safely learn optimal control policy. Furthermore, the safety analysis is studied. In the end, simulation example is given to prove the efficacy of the proposed method.
كشور :
ايران
لينک به اين مدرک :
بازگشت