شماره ركورد كنفرانس :
102
عنوان مقاله :
UPPER ESTIMATE FOR THE NORM OF HAUSDORFF MATRICES ON THE SEQUENTIAL WEAK lp SPACE
پديدآورندگان :
SOLEYMANI MOHAMMAD نويسنده
كليدواژه :
UPPER ESTIMATE , norm , HAUSDORFF MATRICES , Weak Lp spaces , sequential
عنوان كنفرانس :
مجموعه مقالات چهل دومين كنفرانس رياضي ايران
چكيده فارسي :
Let A = (an;k)n;k¸0 be a non-negative matrix. Denote by
kAklp;weak lp the infimum of those U; satisfying the following inequality:
sup
B
(
1
(#B)1¡1
p
X
n2B
à 1X
k=0
an;kxk
!)
· U
à 1X
k=0
xp
k
!1=p
;
where x = fxkg1k
=0 2 lp; xk ¸ 0 and the sup is taken over all nonempty
subset B ½ N with finite cardinal. In this paper we focus on the evaluation
of kAklp;weak lp , where A is a Hausdorff matrix operator. A Hardy type
formula is established as an upper estimate. In particular, we apply our
results to Ces`aro matrices, H¨older matrices, Euler matrices and Gamma
matrices.
شماره مدرك كنفرانس :
1994188