شماره ركورد كنفرانس :
922
عنوان مقاله :
Finding Important Concepts within Ontology
پديدآورندگان :
Kargar Mohammad Javad نويسنده , Babalou Samira نويسنده , Davarpanah Hashem نويسنده , Algergawy Alsayed نويسنده
كليدواژه :
Ontology , Query Answering , Neural network , Rank , Ontology summarization
عنوان كنفرانس :
مجموعه مقالات اولين كنفرانس بين المللي وب پژوهي
چكيده فارسي :
The increasing popularity and extension of semantic web applications have led to myriad amounts of RDF data and ontologies. The large-scale ontology and complex RDF datasets are associated by several sorts of complexities. It is so difficult for users to understand these data sets even if using visualization tools. In order to promote the process and make large-scale ontologies more understandable, ranking algorithms have been used. To this end, in this paper, we introduce a Neural Network-based ranking approach which exploits centrality measures, number of children, and hierarchy level among ontology concepts. The evaluation shows higher performance compared to existing methods.
شماره مدرك كنفرانس :
3967648