شماره ركورد كنفرانس :
102
عنوان مقاله :
LIKELIHOOD-BASED INFERENCE FOR SPATIALLY CORRELATED ORDERED CATEGORICAL DATA MODELS USING THE SAEM ALGORITHM
پديدآورندگان :
KAVEH MARJAN نويسنده
كليدواژه :
likelihood , Inference , CATEGORICAL DATA MODELS , SAEM ALGORITHM , SPATIALLY CORRELATED
عنوان كنفرانس :
مجموعه مقالات چهل دومين كنفرانس رياضي ايران
چكيده فارسي :
Spatially correlated ordered categorical data are produced by
a variety of research areas, such as ecology, epidemiology and the social
sciences. Such data usually arising from a continuous distribution that
is clipped via a set of predetermined threshold values. This paper deals
with determining maximum likelihood estimation of parameters in clipped
Gaussian spatial models. For this purpose, a stochastic approximation EM
algorithm is described. Finally, the predictive distribution at unsample sites
is approximated based on MCMC samples.
شماره مدرك كنفرانس :
1994188