شماره ركورد كنفرانس :
143
عنوان مقاله :
Control Chart Pattern Recognition Using a Novel Efficient Feature and an Optimized RBF Neural Network
عنوان به زبان ديگر :
Control Chart Pattern Recognition Using a Novel Efficient Feature and an Optimized RBF Neural Network
پديدآورندگان :
Attaran Behrooz نويسنده , Ghanbarzadeh Afshin نويسنده Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. , Ansari-Asl Karim نويسنده Department of Electrical, Engineering Faculty
تعداد صفحه :
6
كليدواژه :
feature extraction , classifier , Bees Algorithm , neural network
عنوان كنفرانس :
مجموعه مقالات بيست و دومين كنفرانس سالانه بين المللي مهندسي مكانيك
زبان مدرك :
فارسی
چكيده فارسي :
Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in manufacturing processes. This study investigates the design of an accurate system for control chart pattern (CCP) recognition from two aspects. First, an efficient system is introduced that includes two main modules: the feature extraction module and the classifier module. The feature extraction module uses the optimized capability features using the Bees Algorithm. This is applied for the first time in this area. In the classifier module several neural networks, such as the RBF, and GRNN, and PNN are investigated. Using an experimental study, we choose the best classifier in order to recognize the CCPs. Second, we propose a hybrid heuristic recognition system based on the Bees Algorithm to improve the performance of the classifier. Simulation results confirm that the proposed system outperforms other methods and shows high recognition accuracy about 100%.
شماره مدرك كنفرانس :
3817001
سال انتشار :
1393
از صفحه :
1
تا صفحه :
6
سال انتشار :
0
لينک به اين مدرک :
بازگشت