شماره ركورد كنفرانس :
1730
عنوان مقاله :
Reduced Memory Requirement in Hardware Implementation of SVM Classifiers
عنوان به زبان ديگر :
Reduced Memory Requirement in Hardware Implementation of SVM Classifiers
پديدآورندگان :
Esmaeeli Siamak نويسنده , Gholampour Iman نويسنده
تعداد صفحه :
5
كليدواژه :
LNS to Fixed Point Conversion , Support Vector Machines , Classifier , Logarithmic Number System , Basic Presented Classifier
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
Support Vector Machine (SVM) is a powerful machine-learning tool for pattern recognition, decision making and classification. SVM classifiers outperform otherclassification technologies in many applications. In this paper, two implementations of SVM classifiers are presented using Logarithmic Number System. In the basic classifier alloperations (multiplication, addition and …) are performed using logarithmic numbers. In the logarithmic domain,multiplication and division can be simply treated as addition or subtraction respectively. The main disadvantage of LNS is the large memory requirement for high precision addition andsubtraction. In the improved classifier, multiplication operation is performed using logarithmic numbers, but addition andsubtraction operations are performed with linear fixed point numbers. In this research a lookup table and a shifter are usedto convert LNS numbers to fixed point numbers. The required memory of the improved classifier is 197 times less than the required memory of the basic system without any degradation ofthe SVM classification accuracy
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
5
سال انتشار :
2012
لينک به اين مدرک :
بازگشت