شماره ركورد كنفرانس :
1730
عنوان مقاله :
Linear Feature Extraction for Hyperspectral Images Using Information Theoretic Learning
عنوان به زبان ديگر :
Linear Feature Extraction for Hyperspectral Images Using Information Theoretic Learning
پديدآورندگان :
Kamnadar Mehdi نويسنده , Ghassemian Hassan نويسنده
تعداد صفحه :
5
كليدواژه :
Hyperspectral images , hughes phenomenon , mutual information , Instantaneous Entropy , Linear feature extraction , Supervised classification
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
in this paper, we propose a new linear feature extraction scheme for hyperspectral images. A modified Maximum relevance, Min redundancy (MRMD) is used as acriterion for linear feature extraction. Parzen density estimator and instantaneous entropy estimation are used for estimating mutual information. Using Instantaneous entropy estimatormitigates nonstationary behavior of the hyperspectral data and reduces computational cost. Based on proposed estimator andMRMD, an algorithm for linear feature extraction in hyperspectral images is designed that is less offended by Hueghsphenomenon and has less computation cost for applying to hyperspectral images. An ascent gradient algorithm is used for optimizing proposed criterion with respect to parameters of alinear transform. Preliminary results achieve better classification comparing the traditional methods.
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
5
سال انتشار :
2012
لينک به اين مدرک :
بازگشت