شماره ركورد كنفرانس :
1730
عنوان مقاله :
A Fuzzy Alignment Approach for Identification of Arbitrary Crack Shape Profiles in Metallic structures Using ACFM Technique
عنوان به زبان ديگر :
A Fuzzy Alignment Approach for Identification of Arbitrary Crack Shape Profiles in Metallic structures Using ACFM Technique
پديدآورندگان :
Noroozi Amin نويسنده , PR Hasanzadeh Reza نويسنده , Ravan Maryam نويسنده
تعداد صفحه :
6
كليدواژه :
Neural network , alternative current field measurement , ACFM , fuzzy alignment , Inverse Problem
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
A new inverse problem methodology based on fuzzy alignment approach is presented for sizing crack depth profiles using output probe signals obtained by Alternative Current FieldMeasurement (ACFM) technique. In training stage a generalized version of fuzzy alignment algorithm (GFAA) is used to find themapping between inputs (ACFM probe signals) and outputs (crack depth profiles) and then this mapping is used to find crack depth profile of an arbitrary unknown signal. Merit of theapproach is less necessity to a large data base and it is robust even in the situation that there is not a sufficient database.Therefore it makes the method appropriate for NDE applications in which the lack of sufficient empirical database is crucial. Todemonstrate the accuracy and robustness of the algorithm, experimental results for proposed algorithm, MLP and RBF neural network for both common and complex geometries arereported.
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
6
سال انتشار :
2012
لينک به اين مدرک :
بازگشت