شماره ركورد كنفرانس :
2633
عنوان مقاله :
Fault Detection in Distribution Networks by Zernike Moment
پديدآورندگان :
Khakzadian Arash نويسنده , Moslemi Hassan نويسنده , Haddadnia Javad نويسنده
تعداد صفحه :
5
كليدواژه :
MOMENT , Thermo Vision , Distribution networks , Intelligent Fault , detection , RBF neural network , Zernike
عنوان كنفرانس :
اولين همايش منطقه اي و پژوهشي در فناوري برق
زبان مدرك :
فارسی
چكيده فارسي :
This paper presents a new intelligent method for electrical equipment fault detection in power distribution networks based on thermo images by using of Zernike Moment (ZM) for feature extraction and neural network for classifier. There are several types of faults in substations which transformer bushing breakdown, loose connection between conductor and section insulator, fuse deficiency and destruction of cable bug are the most commonly faults in substations that have been selected in this paper. This method has been conducted on practical thermo images from the electrical distribution network of Tehran. Zernike results have been categorized in to four groups according to Zernike orders. Simulation results indicate the validity of approach method with accuracy of 90.3 percentages using of RBF neural network.
شماره مدرك كنفرانس :
1913298
سال انتشار :
1389
از صفحه :
1
تا صفحه :
5
سال انتشار :
0
لينک به اين مدرک :
بازگشت