شماره ركورد كنفرانس :
144
عنوان مقاله :
Rapid Classification of Mixed Hyperspectral Data by ROAA SVM
پديدآورندگان :
Shirvani S. H. E نويسنده , Aghagolzadeh A نويسنده
كليدواژه :
ROAA SVM , Spectral Mixture Analysis , Hyperspectral data , Mixed pixels , Image Classification , Source separation
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
چكيده فارسي :
Capturing of high resolution hyperspectral images is
one of the most expensive tasks in imaging industry. The main
problem of low resolution hyperspectral data is the classification
of pixels where more than one land cover type lie in one pixel,
called a mixed pixel. To resolve this issue, methods composed of
hard and soft classification techniques have shown good results.
For rapid classification of these mixed hyperspectral images, we
propose to use Reduced OAA SVM combined with spectral
mixture analysis at sub-pixel level and a fast post processing step
to eliminate unwanted solitary mappings. Experiments conducted
over a common hyperspectral image show great improvements in
terms of overall classification accuracy and computation time.
شماره مدرك كنفرانس :
3817034