شماره ركورد كنفرانس :
2857
عنوان مقاله :
Optimal Design of SSSC Damping Controller to Improve Power System Dynamic Stability Using Modified Intelligent Algorithms
پديدآورندگان :
Khani S نويسنده , Sadeghi M نويسنده , Hosseini S. H نويسنده
كليدواژه :
Damping controller , Dynamic stability , PSO , SSSC , genetic algorithm
عنوان كنفرانس :
مجموعه مقالات چهل و سومين كنفرانس رياضي كشور
چكيده فارسي :
In this paper, A modified intelligent Particle
Swarm Optimization (PSO) and continuous Genetic
Algorithms (GA) have been used for optimal selection of the
static synchronous series compensator (SSSC) damping
controller parameters in order to improve power system
dynamic response and its stability. Then the performance of
these methods on system stability has been compared. First
intelligent PSO and genetic algorithms are used to select the
effective feedback signal of the damping controller and then
simulation results are presented to compare the performance
of the proposed SSSC controller in damping the critical modes
in a Single-Machine Infinite-Bus SMIB power system. The
comparison shows that PSO can reach faster than genetic
algorithm to optimal selection of the static synchronous series
compensator (SSSC) damping controller parameters and has
better performance in damping oscillations
شماره مدرك كنفرانس :
1984205