شماره ركورد كنفرانس :
144
عنوان مقاله :
A Hybrid Approach to Optimize Fuzzy If - Then Rules
پديدآورندگان :
Aliahmadipour Laya نويسنده , Eslami Esfandiar نويسنده Department of Mathematics Shahid Bahonar University of Kerman
تعداد صفحه :
6
كليدواژه :
Fuzzy rule , optimization , genetic algorithm , surrogate modeling
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
In this paper we propose a hybrid approach attempting to find optimal value and points for profit and cost functions for which there is no equivalent equation . In this case only vague information as fuzzy ifthen rules are accessible. This approach involves five steps: In the first step, fuzzy rules by expert information are collected and in the second step Mamdani inference method is applied to produce a surface called M-surface. As this surface is not a desirable one, so in the third step, data is extracted from the M-surface and they are used in Surrogate Software. Then in the forth step, by using various methods in Surrogate more accurate vision is built for the mentioned function of fuzzy if-then rules. In the final step a Genetic Algorithm is applied to optimize the result model. This approach can be used to optimize any unknown function via finding only a number of fuzzy ifthen rules of this function by the aid of experts
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
6
سال انتشار :
0
لينک به اين مدرک :
بازگشت