شماره ركورد كنفرانس :
144
عنوان مقاله :
Covariance Matrix Adaptation Particle Filter
پديدآورندگان :
Kalami Heris S. Mostapha نويسنده , Khaloozadeh Hamid نويسنده
كليدواژه :
Intelligent filtering , Nonlinear filtering , Evolutionary filtering (EF) , particle filter , CMA-ES , State estimation
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
چكيده فارسي :
Based on Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) and Particle Filter (PF), an intelligent
particle filter, namely Covariance Matrix Adaptation Particle
Filter (CMA-PF), is proposed in this paper. Search abilities of
CMA-ES are utilized within proposed method to perform Prior
Regularization, which helps the particle filter to generate
particles with higher importance weights. This helps the CMAPF
to operate efficiently and prevents degeneracy and sample
impoverishment. According to simulation results, efficiency and
applicability of CMA-PF is confirmed.
شماره مدرك كنفرانس :
3817034